Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38551533

RESUMO

BACKGROUND: Echocardiographic strain measurements require extensive operator experience and have significant intervendor variability. Creating an automated, open-source, vendor-agnostic method to retrospectively measure global longitudinal strain (GLS) from standard echocardiography B-mode images would greatly improve post hoc research applications and may streamline patient analyses. OBJECTIVES: This study was seeking to develop an automated deep learning strain (DLS) analysis pipeline and validate its performance across multiple applications and populations. METHODS: Interobserver/-vendor variation of traditional GLS, and simulated effects of variation in contour on speckle-tracking measurements were assessed. The DLS pipeline was designed to take semantic segmentation results from EchoNet-Dynamic and derive longitudinal strain by calculating change in the length of the left ventricular endocardial contour. DLS was evaluated for agreement with GLS on a large external dataset and applied across a range of conditions that result in cardiac hypertrophy. RESULTS: In patients scanned by 2 sonographers using 2 vendors, GLS had an intraclass correlation of 0.29 (95% CI: -0.01 to 0.53, P = 0.03) between vendor measurements and 0.63 (95% CI: 0.48-0.74, P < 0.001) between sonographers. With minor changes in initial input contour, step-wise pixel shifts resulted in a mean absolute error of 3.48% and proportional strain difference of 13.52% by a 6-pixel shift. In external validation, DLS maintained moderate agreement with 2-dimensional GLS (intraclass correlation coefficient [ICC]: 0.56, P = 0.002) with a bias of -3.31% (limits of agreement: -11.65% to 5.02%). The DLS method showed differences (P < 0.0001) between populations with cardiac hypertrophy and had moderate agreement in a patient population of advanced cardiac amyloidosis: ICC was 0.64 (95% CI: 0.53-0.72), P < 0.001, with a bias of 0.57%, limits of agreement of -4.87% to 6.01% vs 2-dimensional GLS. CONCLUSIONS: The open-source DLS provides lower variation than human measurements and similar quantitative results. The method is rapid, consistent, vendor-agnostic, publicly released, and applicable across a wide range of imaging qualities.

2.
Sci Rep ; 14(1): 1838, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246978

RESUMO

Blood pressure variability (BPV) and heart rate variability (HRV) have been associated with Alzheimer's Disease and Related Dementias (ADRD) in rigorously controlled studies. However, the extent to which BPV and HRV may offer predictive information in real-world, routine clinical care is unclear. In a retrospective cohort study of 48,204 adults (age 54.9 ± 17.5 years, 60% female) receiving continuous care at a single center, we derived BPV and HRV from routinely collected clinical data. We use multivariable Cox models to evaluate the association of BPV and HRV, separately and in combination, with incident ADRD. Over a median 3 [2.4, 3.0] years, there were 443 cases of new-onset ADRD. We found that clinically derived measures of BPV, but not HRV, were consistently associated with incident ADRD. In combined analyses, only patients in both the highest quartile of BPV and lowest quartile of HRV had increased ADRD risk (HR 2.34, 95% CI 1.44-3.81). These results indicate that clinically derived BPV, rather than HRV, offers a consistent and readily available metric for ADRD risk assessment in a real-world patient care setting. Thus, implementation of BPV as a widely accessible tool could allow clinical providers to efficiently identify patients most likely to benefit from comprehensive ADRD screening.


Assuntos
Doença de Alzheimer , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Frequência Cardíaca , Pressão Sanguínea , Estudos Retrospectivos , Projetos de Pesquisa
3.
Lancet Digit Health ; 6(1): e70-e78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065778

RESUMO

BACKGROUND: Preoperative risk assessments used in clinical practice are insufficient in their ability to identify risk for postoperative mortality. Deep-learning analysis of electrocardiography can identify hidden risk markers that can help to prognosticate postoperative mortality. We aimed to develop a prognostic model that accurately predicts postoperative mortality in patients undergoing medical procedures and who had received preoperative electrocardiographic diagnostic testing. METHODS: In a derivation cohort of preoperative patients with available electrocardiograms (ECGs) from Cedars-Sinai Medical Center (Los Angeles, CA, USA) between Jan 1, 2015 and Dec 31, 2019, a deep-learning algorithm was developed to leverage waveform signals to discriminate postoperative mortality. We randomly split patients (8:1:1) into subsets for training, internal validation, and final algorithm test analyses. Model performance was assessed using area under the receiver operating characteristic curve (AUC) values in the hold-out test dataset and in two external hospital cohorts and compared with the established Revised Cardiac Risk Index (RCRI) score. The primary outcome was post-procedural mortality across three health-care systems. FINDINGS: 45 969 patients had a complete ECG waveform image available for at least one 12-lead ECG performed within the 30 days before the procedure date (59 975 inpatient procedures and 112 794 ECGs): 36 839 patients in the training dataset, 4549 in the internal validation dataset, and 4581 in the internal test dataset. In the held-out internal test cohort, the algorithm discriminates mortality with an AUC value of 0·83 (95% CI 0·79-0·87), surpassing the discrimination of the RCRI score with an AUC of 0·67 (0·61-0·72). The algorithm similarly discriminated risk for mortality in two independent US health-care systems, with AUCs of 0·79 (0·75-0·83) and 0·75 (0·74-0·76), respectively. Patients determined to be high risk by the deep-learning model had an unadjusted odds ratio (OR) of 8·83 (5·57-13·20) for postoperative mortality compared with an unadjusted OR of 2·08 (0·77-3·50) for postoperative mortality for RCRI scores of more than 2. The deep-learning algorithm performed similarly for patients undergoing cardiac surgery (AUC 0·85 [0·77-0·92]), non-cardiac surgery (AUC 0·83 [0·79-0·88]), and catheterisation or endoscopy suite procedures (AUC 0·76 [0·72-0·81]). INTERPRETATION: A deep-learning algorithm interpreting preoperative ECGs can improve discrimination of postoperative mortality. The deep-learning algorithm worked equally well for risk stratification of cardiac surgeries, non-cardiac surgeries, and catheterisation laboratory procedures, and was validated in three independent health-care systems. This algorithm can provide additional information to clinicians making the decision to perform medical procedures and stratify the risk of future complications. FUNDING: National Heart, Lung, and Blood Institute.


Assuntos
Aprendizado Profundo , Humanos , Medição de Risco/métodos , Algoritmos , Prognóstico , Eletrocardiografia
4.
JAMA Cardiol ; 8(12): 1131-1139, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851434

RESUMO

Importance: Early detection of atrial fibrillation (AF) may help prevent adverse cardiovascular events such as stroke. Deep learning applied to electrocardiograms (ECGs) has been successfully used for early identification of several cardiovascular diseases. Objective: To determine whether deep learning models applied to outpatient ECGs in sinus rhythm can predict AF in a large and diverse patient population. Design, Setting, and Participants: This prognostic study was performed on ECGs acquired from January 1, 1987, to December 31, 2022, at 6 US Veterans Affairs (VA) hospital networks and 1 large non-VA academic medical center. Participants included all outpatients with 12-lead ECGs in sinus rhythm. Main Outcomes and Measures: A convolutional neural network using 12-lead ECGs from 2 US VA hospital networks was trained to predict the presence of AF within 31 days of sinus rhythm ECGs. The model was tested on ECGs held out from training at the 2 VA networks as well as 4 additional VA networks and 1 large non-VA academic medical center. Results: A total of 907 858 ECGs from patients across 6 VA sites were included in the analysis. These patients had a mean (SD) age of 62.4 (13.5) years, 6.4% were female, and 93.6% were male, with a mean (SD) CHA2DS2-VASc (congestive heart failure, hypertension, age, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, vascular disease, age, sex category) score of 1.9 (1.6). A total of 0.2% were American Indian or Alaska Native, 2.7% were Asian, 10.7% were Black, 4.6% were Latinx, 0.7% were Native Hawaiian or Other Pacific Islander, 62.4% were White, 0.4% were of other race or ethnicity (which is not broken down into subcategories in the VA data set), and 18.4% were of unknown race or ethnicity. At the non-VA academic medical center (72 483 ECGs), the mean (SD) age was 59.5 (15.4) years and 52.5% were female, with a mean (SD) CHA2DS2-VASc score of 1.6 (1.4). A total of 0.1% were American Indian or Alaska Native, 7.9% were Asian, 9.4% were Black, 2.9% were Latinx, 0.03% were Native Hawaiian or Other Pacific Islander, 74.8% were White, 0.1% were of other race or ethnicity, and 4.7% were of unknown race or ethnicity. A deep learning model predicted the presence of AF within 31 days of a sinus rhythm ECG on held-out test ECGs at VA sites with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI, 0.85-0.86), accuracy of 0.78 (95% CI, 0.77-0.78), and F1 score of 0.30 (95% CI, 0.30-0.31). At the non-VA site, AUROC was 0.93 (95% CI, 0.93-0.94); accuracy, 0.87 (95% CI, 0.86-0.88); and F1 score, 0.46 (95% CI, 0.44-0.48). The model was well calibrated, with a Brier score of 0.02 across all sites. Among individuals deemed high risk by deep learning, the number needed to screen to detect a positive case of AF was 2.47 individuals for a testing sensitivity of 25% and 11.48 for 75%. Model performance was similar in patients who were Black, female, or younger than 65 years or who had CHA2DS2-VASc scores of 2 or greater. Conclusions and Relevance: Deep learning of outpatient sinus rhythm ECGs predicted AF within 31 days in populations with diverse demographics and comorbidities. Similar models could be used in future AF screening efforts to reduce adverse complications associated with this disease.


Assuntos
Fibrilação Atrial , Aprendizado Profundo , Acidente Vascular Cerebral , Veteranos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Acidente Vascular Cerebral/epidemiologia , Eletrocardiografia
5.
Commun Med (Lond) ; 3(1): 73, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237055

RESUMO

BACKGROUND: Undiagnosed chronic kidney disease (CKD) is a common and usually asymptomatic disorder that causes a high burden of morbidity and early mortality worldwide. We developed a deep learning model for CKD screening from routinely acquired ECGs. METHODS: We collected data from a primary cohort with 111,370 patients which had 247,655 ECGs between 2005 and 2019. Using this data, we developed, trained, validated, and tested a deep learning model to predict whether an ECG was taken within one year of the patient receiving a CKD diagnosis. The model was additionally validated using an external cohort from another healthcare system which had 312,145 patients with 896,620 ECGs between 2005 and 2018. RESULTS: Using 12-lead ECG waveforms, our deep learning algorithm achieves discrimination for CKD of any stage with an AUC of 0.767 (95% CI 0.760-0.773) in a held-out test set and an AUC of 0.709 (0.708-0.710) in the external cohort. Our 12-lead ECG-based model performance is consistent across the severity of CKD, with an AUC of 0.753 (0.735-0.770) for mild CKD, AUC of 0.759 (0.750-0.767) for moderate-severe CKD, and an AUC of 0.783 (0.773-0.793) for ESRD. In patients under 60 years old, our model achieves high performance in detecting any stage CKD with both 12-lead (AUC 0.843 [0.836-0.852]) and 1-lead ECG waveform (0.824 [0.815-0.832]). CONCLUSIONS: Our deep learning algorithm is able to detect CKD using ECG waveforms, with stronger performance in younger patients and more severe CKD stages. This ECG algorithm has the potential to augment screening for CKD.


Chronic kidney disease (CKD) is a common condition involving loss of kidney function over time and results in a substantial number of deaths. However, CKD often has no symptoms during its early stages. To detect CKD earlier, we developed a computational approach for CKD screening using routinely acquired electrocardiograms (ECGs), a cheap, rapid, non-invasive, and commonly obtained test of the heart's electrical activity. Our model achieved good accuracy in identifying any stage of CKD, with especially high accuracy in younger patients and more severe stages of CKD. Given the high global burden of undiagnosed CKD, novel and accessible CKD screening strategies have the potential to help prevent disease progression and reduce premature deaths related to CKD.

6.
J Am Soc Echocardiogr ; 36(5): 474-481.e3, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566995

RESUMO

BACKGROUND: Coronary artery calcification (CAC), often assessed by computed tomography (CT), is a powerful marker of coronary artery disease that can guide preventive therapies. Computed tomographies, however, are not always accessible or serially obtainable. It remains unclear whether other widespread tests such as transthoracic echocardiograms (TTEs) can be used to predict CAC. METHODS: Using a data set of 2,881 TTE videos paired with coronary calcium CTs, we trained a video-based artificial intelligence convolutional neural network to predict CAC scores from parasternal long-axis views. We evaluated the model's ability to classify patients from a held-out sample as well as an external site sample into zero CAC and high CAC (CAC ≥ 400 Agatston units) groups by receiver operating characteristic and precision-recall curves. We also investigated whether such classifications prognosticated significant differences in 1-year mortality rates by the log-rank test of Kaplan-Meier curves. RESULTS: Transthoracic echocardiogram artificial intelligence models had high discriminatory abilities in predicting zero CAC (receiver operating characteristic area under the curve [AUC] = 0.81 [95% CI, 0.74-0.88], F1 score = 0.95) and high CAC (AUC = 0.74 [0.68-0.8], F1 score = 0.74). This performance was confirmed in an external test data set of 92 TTEs (AUC = 0.75 [0.65-0.85], F1 score = 0.77; and AUC = 0.85 [0.76-0.93], F1 score = 0.59, respectively). Risk stratification by TTE-predicted CAC performed similarly to CT CAC scores in prognosticating significant differences in 1-year survival in high-CAC patients (CT CAC ≥ 400 vs CT CAC < 400, P = .03; TTE-predicted CAC ≥ 400 vs TTE-predicted CAC < 400, P = .02). CONCLUSIONS: A video-based deep learning model successfully used TTE videos to predict zero CAC and high CAC with high accuracy. Transthoracic echocardiography-predicted CAC prognosticated differences in 1-year survival similar to CT CAC. Deep learning of TTEs holds promise for future adjunctive coronary artery disease risk stratification to guide preventive therapies.


Assuntos
Doença da Artéria Coronariana , Aprendizado Profundo , Calcificação Vascular , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Cálcio , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Inteligência Artificial , Fatores de Risco , Valor Preditivo dos Testes , Ecocardiografia , Calcificação Vascular/diagnóstico por imagem
7.
EBioMedicine ; 73: 103613, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34656880

RESUMO

BACKGROUND: Laboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from interpreting medical imaging. We hypothesized that deep learning interpretation of echocardiogram videos can provide additional value in understanding disease states and can evaluate common biomarkers results. METHODS: We developed EchoNet-Labs, a video-based deep learning algorithm to detect evidence of anemia, elevated B-type natriuretic peptide (BNP), troponin I, and blood urea nitrogen (BUN), as well as values of ten additional lab tests directly from echocardiograms. We included patients (n = 39,460) aged 18 years or older with one or more apical-4-chamber echocardiogram videos (n = 70,066) from Stanford Healthcare for training and internal testing of EchoNet-Lab's performance in estimating the most proximal biomarker result. Without fine-tuning, the performance of EchoNet-Labs was further evaluated on an additional external test dataset (n = 1,301) from Cedars-Sinai Medical Center. We calculated the area under the curve (AUC) of the receiver operating characteristic curve for the internal and external test datasets. FINDINGS: On the held-out test set of Stanford patients not previously seen during model training, EchoNet-Labs achieved an AUC of 0.80 (0.79-0.81) in detecting anemia (low hemoglobin), 0.86 (0.85-0.88) in detecting elevated BNP, 0.75 (0.73-0.78) in detecting elevated troponin I, and 0.74 (0.72-0.76) in detecting elevated BUN. On the external test dataset from Cedars-Sinai, EchoNet-Labs achieved an AUC of 0.80 (0.77-0.82) in detecting anemia, of 0.82 (0.79-0.84) in detecting elevated BNP, of 0.75 (0.72-0.78) in detecting elevated troponin I, and of 0.69 (0.66-0.71) in detecting elevated BUN. We further demonstrate the utility of the model in detecting abnormalities in 10 additional lab tests. We investigate the features necessary for EchoNet-Labs to make successful detection and identify potential mechanisms for each biomarker using well-known and novel explainability techniques. INTERPRETATION: These results show that deep learning applied to diagnostic imaging can provide additional clinical value and identify phenotypic information beyond current imaging interpretation methods. FUNDING: J.W.H. and B.H. are supported by the NSF Graduate Research Fellowship. D.O. is supported by NIH K99 HL157421-01. J.Y.Z. is supported by NSF CAREER 1942926, NIH R21 MD012867-01, NIH P30AG059307 and by a Chan-Zuckerberg Biohub Fellowship.


Assuntos
Biomarcadores , Aprendizado Profundo , Ecocardiografia , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Curva ROC , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...